Which classes of origin graphs are generated by transducers?

Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon and Vincent Penelle

Uniwersytet Warszawski

April 3, 2017

— Formal Methods of Transformations —

Dagstuhl Seminar 17142

This work is part of a project LIPA that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.683080).
Definition

A transduction is a subset of $\Sigma^* \times \Gamma^*$.
Definition

A transduction is a subset of $\Sigma^* \times \Gamma^*$.

An origin transduction is a set of origin graphs:

```
 a b c a b b a c b
```

Input edge

```
 a a a b b b b
```

Output edge

```
 a a a b b b b
```

Origin color

```
 a b c a b b a c b
```

Input edge

```
 a a a b b b b
```

Output edge
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a | w | a . b | w | b \]
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a|w|_a \cdot b|w|_b$$

![Diagram](image)
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a \cdot w \cdot b \]

\[
\begin{array}{cccccccc}
\top & a & b & c & a & b & b & a & c & b & \bot \\
\end{array}
\]

A

read

write

input tape

output tape

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a | w | a \cdot b | w | b \]

| ← | a | b | c | a | b | b | a | c | b | ← |

\[A \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\(w \mapsto a|w|_a \cdot b|w|_b \)

![Diagram showing 2-way automata and streaming string transducer with input and output symbols, and a transition example.]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto \overline{a|w|_a \cdot b|w|_b} \]

Remark
We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer (SST);
- MSO transductions ($MSOT$).

Example

$$w \mapsto a \cdot w \cdot b$$

Remark
We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a|w|_a \cdot b|w|_b \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a \cdot b \]

![Diagram of a transducer with input 'aabbaba' and output 'abaab']
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a|w|_a \cdot b|w|_b$$

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a | w | a \cdot b | w | b \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a \cdot w \cdot b \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a \lvert \cdot \rvert b \]

Remark

We have an MSO transduction from input word to origin graphs.

\[\vdash \]
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[
\begin{array}{c}
 \text{read input tape} \\
 \text{write output tape}
\end{array}
\]

\[
| \quad \begin{array}{cccccccc}
 a & b & c & a & b & b & a & c & b & \mid
 \\
 a & a & a & b & b & b & b & \mid
\end{array}
\]

Remark
We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- Streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a|w|_a \cdot b|w|_b \]

\[\begin{array}{c}
\text{read} \\
\text{input tape} \\
\text{write} \\
\text{output tape}
\end{array} \]

\[\begin{array}{c}
a \rightarrow b \\
a \rightarrow c \\
a \rightarrow a \\
b \rightarrow a \\
b \rightarrow b \\
b \rightarrow b \\
b \rightarrow b \\
c \rightarrow b
\end{array} \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a \cdot b$$

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a|w_a \cdot b|w_b \]

\[
\begin{array}{cccccccc}
 a & b & c & a & b & b & a & c & b \\
\end{array}
\]

Register 1: \[A \]

Register 2:
2-way automata with outputs ($2FT$);
streaming string transducer (SST);
MSO transductions ($MSOT$).

Example

$$w \mapsto a^{\|w\|_a} \cdot b^{\|w\|_b}$$
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[\omega \mapsto a^{|\omega|_a} \cdot b^{|\omega|_b} \]

<table>
<thead>
<tr>
<th>register 1:</th>
<th>register 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
</tr>
</tbody>
</table>

Remark: We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer (SST);
- MSO transductions ($MSOT$).

Example

$$w \mapsto a^{w_a} \cdot b^{w_b}$$

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer (SST);
- MSO transductions ($MSOT$).

Example

$$w \mapsto a^{|w|_a} \cdot b^{|w|_b}$$

Diagram

```
+---+---+---+---+---+---+---+---+
| a | b | c | a | b | b | a | c | b |
+---+---+---+---+---+---+---+---+
```

Register 1:

```
+---+---+
| a | a |
+---+---+
```

Register 2:

```
+---+
| b |
+---+
```

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$w \mapsto a^{\lfloor w \rfloor_a} \cdot b^{\lfloor w \rfloor_b}$

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer (SST);
- MSO transductions ($MSOT$).

Example

$$w \mapsto a \cdot w_a \cdot b \cdot w_b$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>b</th>
<th>--</th>
</tr>
</thead>
</table>

register 1:

```
A
a a a b b b b
```

register 2:

```
A
b b b b
```

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a^{w|_a} \cdot b^{w|_b} \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer ($SSST$);
- MSO transductions ($MSOT$).

Example

\[w \mapsto a | w_a \cdot b | w_b \]

\[\begin{array}{c}
 \text{register 1:} \\
 a \quad a \quad a \\
 \text{register 2:} \\
 b \quad b \quad b \\
\end{array} \]

Remark
We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a^{|w|_a} \cdot b^{|w|_b} \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a \upharpoonright w \upharpoonright_a b \upharpoonright w \upharpoonright_b \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a|w|_a \cdot b|w|_b$$

Remark We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto \begin{array}{c}
 a | w_a \cdot b | w_b \\
\end{array} \]

Diagram:**

```
  register 1: [a] [a] [a] [b] [b] [b] [b] 
  register 2: [ ]

  output

  A
```
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a^{\mid w \mid_a} \cdot b^{\mid w \mid_b} \]

![Diagram showing the transduction process with input and output sequences.](image_url)
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a_w^a \cdot b_w^b \]
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a|w|_a . b|w|_b \]

![Diagram showing the transformation of a string w through transducer]
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a|w|_a \cdot b|w|_b \]
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \rightarrow a^{\mid w \mid_a} \cdot b^{\mid w \mid_b} \]

\[a \rightarrow b \rightarrow c \rightarrow a \rightarrow b \rightarrow b \rightarrow a \rightarrow c \rightarrow b \]

Copy 1

Copy 2
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

\[w \mapsto a^{|w|_a} \cdot b^{|w|_b} \]

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs ($2FT$);
- streaming string transducer (SST);
- MSO transductions ($MSOT$).

Example

$$w \mapsto a \| w \|_a \cdot b \| w \|_b$$

Remark

We have an MSO transduction from input word to origin graphs.
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a|w|_a \cdot b|w|_b$$
Origin semantics of transducers

- 2-way automata with outputs (2FT);
- streaming string transducer (SST);
- MSO transductions (MSOT).

Example

$$w \mapsto a^{w_a} \cdot b^{w_b}$$

Remark

We have an MSO transduction from input word to origin graphs.
MSO logic is undecidable on unrestricted origin transductions.
Questions

MSO logic is undecidable on MSO-definable origin transductions.
MSO logic is undecidable on **MSO-definable** origin transductions.

An **MSO** sentence over the *origin vocabulary*:

- predicates for *input*, *output* and *origin* edges;
- predicates for \((\Sigma \cup \Gamma)\)-labellings.
MSO logic is undecidable on MSO-definable origin transductions.

An MSO sentence over the origin vocabulary:
- predicates for input, output and origin edges;
- predicates for \((\Sigma \cup \Gamma)\)-labellings.

Questions

- *Is MSO decidable on origin semantics of transducers?*
MSO logic is undecidable on **MSO-definable** origin transductions.

An MSO sentence over the *origin vocabulary*:
- predicates for input, output and origin edges;
- predicates for \((\Sigma \cup \Gamma)\)-labellings.

Questions

- *Is MSO decidable on origin semantics of transducers?*
- *Which origin transductions are realised by transducer?*
Theorem

The following is **decidable**:

Input
- a transducer \mathcal{A}
- an MSO formula ϕ over the corresponding origin vocabulary

Question
- Is ϕ true in some origin graph in the origin semantics of \mathcal{A}?
The following is **decidable**:

Input
- a transducer A
- an MSO formula ϕ over the corresponding origin vocabulary

Question
- Is ϕ true in some origin graph in the origin semantics of A?

Example

“The output may be split in two parts such that the origin mapping is order-preserving on each part.”
MSO satisfiability on origin semantics

Theorem

The following is **decidable**:

Input
- a transducer A
- an MSO formula ϕ over the corresponding origin vocabulary

Question
- Is ϕ true in some origin graph in the origin semantics of A?

Proof.

- from a string-to-string MSO-transduction, we can obtain a string-to-origin graph MSO-transduction
Theorem

The following is **decidable**:

Input
- a transducer A
- an MSO formula ϕ over the corresponding origin vocabulary

Question
- Is ϕ true in some origin graph in the origin semantics of A?

Proof.

- from a string-to-string MSO-transduction we can obtain a string-to-origin graph MSO-transduction

Consider $L = \left\{ w \in \Sigma^* \mid \phi \text{ is true in the origin graph produced by } A \text{ on } w \right\}$
Theorem

The following is **decidable**:

Input
- a transducer A
- an MSO formula ϕ over the corresponding origin vocabulary

Question
- Is ϕ true in some origin graph in the origin semantics of A?

Proof.

- from a string-to-string MSO-transduction we can obtain a string-to-origin graph MSO-transduction

Consider $L = \left\{ w \in \Sigma^* \mid \phi \text{ is true in the origin graph produced by } A \text{ on } w \right\}$

by Backward Translation Theorem [Courcelle&Engelfriet 2012], L is regular.
Theorem

The following is decidable:

Input

- a transducer A
- an MSO formula ϕ over the corresponding origin vocabulary

Question

- Is ϕ true in some origin graph in the origin semantics of A?

linear time when A is fixed

Proof.

- from a string-to-string MSO-transduction we can obtain a string-to-origin graph MSO-transduction

Consider $L = \left\{ w \in \Sigma^* \mid \phi \text{ is true in the origin graph produced by } A \text{ on } w \right\}$

by Backward Translation Theorem [Courcelle&Engelfriet 2012], L is regular.
Theorem
An origin transduction is the origin semantics of a functional ss if and only if it is mso-definable over origin vocabulary:
- functional: for each input word, there is at most one origin graph;
- bounded origin: each input position is the origin of at most m output positions;
- bounded crossing: next slide.
Theorem

An *origin transduction* is the *origin semantics* of a functional SST if and only if it is
Theorem

An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
Theorem

An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional:
Which origin transduction is an origin regular transduction?

Theorem

An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional: for each input word, there is at most one origin graph;
Which origin transduction is an origin regular transduction?

Theorem

An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional:
 for each input word, there is at most one origin graph;
- bounded origin:
An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional:
 for each input word, there is at most one origin graph;
- bounded origin:
 each input position is the origin of at most m output positions;
Which origin transduction is an origin regular transduction?

Theorem

An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional:
 for each input word, there is at most one origin graph;
- bounded origin:
 each input position is the origin of at most m output positions;
- bounded crossing:
An origin transduction is the origin semantics of a functional SST if and only if it is

- MSO-definable over origin vocabulary;
- functional:
 for each input word, there is at most one origin graph;
- bounded origin:
 each input position is the origin of at most m output positions;
- bounded crossing:

NEXT SLIDE.
Definition (crossing)

- crossing of an input position
 - number of maximal factors of the output that originate in the input prefix ending in the position

![Diagram of crossing example](image-url)
Definition (crossing)

- crossing of an input position
 number of maximal factors of the output
 that originate in the input prefix ending in the position

```latex
\begin{align*}
\text{a} & \rightarrow \text{b} & \rightarrow \text{c} \quad \text{a} \rightarrow \text{b} & \rightarrow \text{b} \\
\text{a} & \rightarrow \text{a} & \rightarrow \text{a} \quad \text{b} & \rightarrow \text{b} & \rightarrow \text{b} & \rightarrow \text{b}
\end{align*}
```
Definition (crossing)

crossing of an input position

number of maximal factors of the output

that originate in the input prefix ending in the position

```
a b c a b b a c b
```

```
left 1 left 2 right 1 right 2
```

crossing: 2

\[
\frac{7}{11}
\]
Definition (crossing)

- crossing of an **input position**
- number of maximal factors of the **output**
 that originate in the **input prefix** ending in the position

Diagram:

```
  a b c a b b a c b
left1 left2 right1 right2
```

crossing: 2
Definition (crossing)

- crossing of an input position
 number of maximal factors of the output
 that originate in the input prefix ending in the position
- crossing of an origin graph: \(\text{max} \) of the crossings

```
 crossing: 2
```

```
left_1

right_1

left_2

right_2
```
Theorem (with nondeterminism?)

A set of origin graphs is

- the origin semantics of a \textit{k-register unambiguous} SST
 if and only if it is

 MSO-definable, functional and \textit{k-bounded crossing}
A set of origin graphs is
- the origin semantics of a \textit{k}-register \textbf{unambiguous} SST
 if and only if it is
 MSO-definable, functional \textbf{and} \textit{k}-bounded crossing

Remark:
\[
\{ \text{MSO-definable, functional, bounded crossing} \} \implies \text{bounded origin}
\]
Theorem (with nondeterminism?)

A set of origin graphs is

- the origin semantics of a \(k \)-register unambiguous SST if and only if it is
 \(\text{MSO-definable, functional and } k \)-bounded crossing

- the origin semantics of a \(k \)-register nondeterministic SST if and only if it is
 \(\text{MSO-definable, bounded origin and } k \)-bounded crossing

Remark:

\[
\begin{align*}
\text{MSO-definable} & \quad \text{functional} \\
\text{bounded crossing} & \quad \implies \quad \text{bounded origin}
\end{align*}
\]
Theorem (with nondeterminism?)

A set of origin graphs is

- the origin semantics of a k-register \textbf{unambiguous} SST if and only if it is MSO-definable, functional and k-bounded crossing

- the origin semantics of a k-register \textbf{nondeterministic} SST if and only if it is MSO-definable, bounded origin and k-bounded crossing

An \textbf{MSO-definable set of origin graphs is}

- the origin semantics of a k-register \textbf{NSST with } ε-transitions if and only if it is \textbf{k-bounded crossing}

Remark: \space MSO-definable \hspace{0.5cm} \begin{array}{l} \hspace{1.5cm} \text{functional} \hspace{2cm} \text{bounded crossing} \end{array} \hspace{0.5cm} \rightarrow \hspace{0.5cm} \text{bounded origin}
Sketch of the proof \(\implies\)

- unambiguous \(\implies\) functional
- NSST \(\implies\) bounded origin
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction \implies MSO-definable
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction

\implies MSO-definable
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction \implies MSO-definable

\[\rho \]
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction

\implies MSO-definable
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction

\implies MSO-definable
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction

\implies MSO-definable
Sketch of the proof \(\Longrightarrow \)

- unambiguous \(\Longrightarrow \) functional
- NSST \(\Longrightarrow \) bounded origin
- NSST \(\Longrightarrow \) nondeterministic MSO-transduction
 \(\Longrightarrow \) MSO-definable

False when \(\varepsilon \)-transitions are allowed.
Sketch of the proof

- unambiguous \Rightarrow functional
- NSST \Rightarrow bounded origin
- NSST \Rightarrow nondeterministic MSO-transduction \Rightarrow MSO-definable
- k-register \Rightarrow k-bounded crossing
Sketch of the proof

- unambiguous \implies functional
- NSST \implies bounded origin
- NSST \implies nondeterministic MSO-transduction \implies MSO-definable
- k-register \implies k-bounded crossing

Diagram:

- Left 1
- Right 1
- Left 2
- Right 2
Start with an \textit{MSO-definable} set of origin graphs G with crossing bounded by k.

Definition (k-block origin graphs (k-BLOGs))

An origin graph with output split in k identified blocks.
Start with an **MSO-definable** set of origin graphs G with crossing bounded by k.

Definition (k-block origin graphs (k-BLOGs))

An origin graph with **output** split in k identified blocks.
Sketch of the proof \(\iff\)

- Start with an \textbf{MSO-definable} set of origin graphs \(G\) with crossing bounded by \(k\)

Definition \((k\text{-block origin graphs \((k\text{-BLOGs})\))

An origin graph with output split in \(k\) identified blocks.

![Graph Diagram]

\[\text{Definition \((k\text{-block origin graphs \((k\text{-BLOGs})\))}}\]
Start with an MSO-definable set of origin graphs G with crossing bounded by k.

Definition (k-block origin graphs (k-BLOGs))

An origin graph with output split in k identified blocks.
Start with an **MSO-definable** set of origin graphs G with crossing bounded by k

we define a finite set of (partial) operations Ω_k on k-BLOGs

Definition (k-block origin graphs (k-BLOGs))

An origin graph with output split in k identified blocks.

![Diagram of k-block origin graphs](image)
Sketch of the proof

- Start with an **MSO-definable** set of origin graphs G
 - with **crossing bounded by** k
- we define a finite set of (partial) operations Ω_k on k-BLOGs
Sketch of the proof

- Start with an \textbf{MSO-definable} set of origin graphs G with crossing bounded by k
- we define a finite set of (partial) operations Ω_k on k-BLOGs
- the folding of word w over Ω_k^* is the k-BLOG $\alpha_k(w)$ obtained from the empty graph by applying the operations
Sketch of the proof

- Start with an **MSo-definable** set of origin graphs \(G \) with crossing bounded by \(k \)

- we define a finite set of (partial) operations \(\Omega_k \) on \(k \)-BLOGs

- the folding of word \(w \) over \(\Omega_k^* \) is the \(k \)-BLOG \(\alpha_k(w) \) obtained from the empty graph by applying the operations

- there exists a **regular language** \(L \subseteq \Omega_k^* \) such that

\[
g \in G \iff g = \alpha_k(w) \text{ for some } w \in L
\]
Sketch of the proof

- Start with an MSO-definable set of origin graphs G
 with crossing bounded by k

- we define a finite set of (partial) operations Ω_k on k-BLOGs

- the folding of word w over Ω_k^* is the k-BLOG $\alpha_k(w)$
 obtained from the empty graph by applying the operations

- there exists a regular language $L \subseteq \Omega_k^*$ such that
 $$g \in G \iff g = \alpha_k(w) \text{ for some } w \in L$$

- from an automaton recognising L,
 we build a NSST with ε-transitions realising G
Open directions

- 2-way nondeterministic automata with outputs?
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are MSO-def but not bounded crossing

example: \(\{ (u, v) \mid v \in u^* \} \)
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are \(\text{MSO-def} \) but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)

- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth

Thank you for your attention.
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are MSO-def but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)

- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth
2-way nondeterministic automata with outputs?
- origin semantics are MSO-def but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)
- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are MSO-def but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)
- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are MSO-def but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)

- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are \(\text{MSO-def} \) but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)

- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth

Thank you for your attention.
Open directions

- 2-way nondeterministic automata with outputs?
 - origin semantics are MSO-def but not bounded crossing
 example: \(\{(u, v) \mid v \in u^*\} \)

- origin graphs with some other graph property
 bounded treewidth/pathwidth/cliquewidth

Thank you for your attention.